Power Factor Prediction in Three Phase Electrical Power Systems Using Machine Learning

نویسندگان

چکیده

The power factor in electrical systems is of paramount importance because the influence on economic cost energy consumption as well quality requested by grid. Low affects both consumers and suppliers due to an increase current requirements for installation, bigger sizing industrial equipment, conductor wiring that can sustain higher currents, additional voltage regulators equipment. In this work, we present a technique predicting variations three phase systems, using machine learning algorithms. proposed model was developed tested medium installations found be fairly accurate thus representing reduced approach monitoring. modified predict variation factor, taking into account removable sources connected This new way analyzing behavior through prediction has potential facilitate decision-making customers, reduce maintenance costs, probability injecting disturbances network, above all affords reliable without need real-time monitoring, which represents reduction consumer.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

wind farm impact on generation adequacy in power systems

در سال های اخیر به دلیل افزایش دمای متوسط کره زمین، بشر به دنبال روش های جایگزین برای تامین توان الکتریکی مورد نیاز خود بوده و همچنین در اکثر نقاط جهان سوزاندن سوخت های فسیلی در نیروگاه های حرارتی به عنوان مهم ترین روش تولید توان الکتریکی مطرح بوده است. به دلیل توجه به مسایل زیست محیطی، استفاده از منابع انرژی تجدید پذیر در سال های اخیر شدت یافته است. نیروگاه های بادی به عنوان یک منبع تولید توان...

15 صفحه اول

fault location in power distribution networks using matching algorithm

چکیده رساله/پایان نامه : تاکنون روش‏های متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روش‏ها در شبکه توزیع به دلایلی همچون وجود انشعاب‏های متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تک‏فاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...

Wind Power Prediction with Machine Learning

Better predictionmodels for the upcoming supply of renewable energy are important to decrease the need of controlling energy provided by conventional power plants. Especially for successful power grid integration of the highly volatile wind power production, a reliable forecast is crucial. In this chapter, we focus on shortterm wind power prediction and employ data from the National Renewable E...

متن کامل

Wind Power Prediction with Machine Learning Ensembles

For a sustainable integration of wind power into the electricity grid, precise and robust predictions are required. With increasing installed capacity and changing energy markets, there is a growing demand for short-term predictions. Machine learning methods can be used as a purely data-driven, spatio-temporal prediction model that yields better results than traditional physical models based on...

متن کامل

Optimizing Leakage Power using Machine Learning

As transistor technology nodes continue to scale into deep sub-micron processes, leakage power is becoming an increasingly large portion of the total power. This has been true for many years now, ever since deep submicron processes became available. In addition, more recently, computing is becoming increasingly mobile, where minimal power is of paramount importance. As a result, companies are b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sustainability

سال: 2022

ISSN: ['2071-1050']

DOI: https://doi.org/10.3390/su14159113